
www.manaraa.com

Emphasizing Design in the Computer Science Curriculum

Thad R. Crews, Jr.
Assistant Professor

Department of Computer Science
Western Kentucky University

Introduction
My goals as an educator and my opinions about the future of
computer science education are a direct result of my
experience. I knew I wanted to work in the field of
computer science since I was a sophomore in high school.
Two years of high school programming courses were
followed by a computer science degree from a CSAB
accredited university. Upon graduation, I accepted a typical
industry position: a software engineer for a large
information technology company. Almost immediately I
was astonished to realize that, despite a solid education, I
was ill prepared for my role as a software engineer
(emphasis mine). Specifically, I had a great deal of
experience in writing code and in the theoretical foundations
of my discipline, but little experience with the software
engineering process. This sparked my interest in the
education process, and solidified my resolve to earn a
terminal degree and re-examine the process that had left me
wanting.

I decided to pursue my doctorate at Vanderbilt
University for the strength of both its computer science and
education programs. My involvement as a member of the
Cognition and Technology Group at Vanderbilt (CTGV)
proved invaluable in stretching my understanding of what
computer science education could entail. Specifically, my
work with the Jasper Project involving the development of
instructional software to assist curriculum has influenced
my attitudes regarding the computer science curriculum.

In my two years as a computer science faculty member
at Western Kentucky University I have paid close attention
to opportunities to supplement the established curriculum
with new instructional technology and pedagogical
approaches which will, hopefully, provide computer science
students with an understanding of engineering principles. In
particular, I have attempted to emphasize design whenever
possible.

Design in Computer Science
The term software engineering reflects the belief that
software production should be an engineering like activity.
The philosophies and paradigms of established engineering
disciplines should be used to improve the quality of
software. As a result of industry following software
engineering principles, over the past 20 years there has been
a steady productivity increase of roughly 6 percent per year,

comparable to what has been observed in many
manufacturing industries [1].

Software development involves a series of phases:
requirements, specification, design, implementation, and
maintenance. In most undergraduate curricula, however,
students spend a disproportionate amount of time and effort
on implementation issues, including language-specific
syntax and the implementation of classical algorithms. This
is largely due to the fact that requirements, specifications
and maintenance activities are difficult to adequately model
while covering the breadth of the undergraduate curriculum.
It is my strong belief, however, that design can and should
be stressed throughout the educational process. A solid
grounding in design benefits the student. Effective
maintenance depends more on ones ability to understanding
design than implementation. Likewise, specifications and
requirements are more related to design than
implementation.

For the remainder of this essay I would like to present
my educational strategies for integrating design into the
computer science curriculum.

Strategies for Teaching Freshmen
“Introducing Design”
Traditionally the first computer science course has been a
language-specific programming course. While the
textbooks for these courses acknowledge the stages of
software engineering, the reality is that they focus almost
entirely on issues of language-specific syntax and
implementation. As a result, students are mislead as to the
relatively small role implementation plays in the software
development process. (Schach [1] uses industry data-points
to suggest that basic coding makes up only 5% of the
software development effort.)

I am leading an effort at Western Kentucky
University to redesign our introductory computer science
course so that design and testing are given equal importance
to implementation. In addition, the course is language
independent and avoids the temptation to focus on issues of
syntax. To support this course, we are developing
instructional technology that allows students to design,
develop, execute and evaluate algorithms as flowcharts. A
paper discussing this instructional software appears in the
conference proceedings.

www.manaraa.com

Strategies for Teaching Sophomores
“Design of Large Systems”
One of my goals for a redesigned computer science
curriculum is to offer a formal course on software
engineering in the second year. In far too many programs
this course is delayed until the junior or even senior year.
This, I believe, is an injustice to the student. As I stated
earlier, the breadth of the curriculum necessitates frequent
programming exercises, and that frequency demands
assignments be manageable in size. The result is that
students are not exposed to the dynamics of large systems
until they take a course in software engineering.
Furthermore, it is this course – more than any other – which
gives students a perspective of industry practice. The
sooner students are exposed to this perspective, the sooner
they are able to develop a professional mindset regarding
their coursework.

Strategies for Teaching Juniors
“Theoretical Limits and Classical Techniques”
Students in the third year are exposed to the topics that
distinguish a software engineer from, say, an electrical
engineer that happens to know how to write C++ code. In
this year, students learn about the theoretical foundations
and associated limits of the field. Additionally, students are
introduced to the classical algorithms that all software
engineers have in their toolbox.

My suggestion for these courses is that they be
taught in a problem-based methodology. For example, a
typical activity would be to introduce Dijkstra’s shortest
path algorithm followed by a discussion of a programming
application. The approach I take with my students is to
confront them with various real-world problems whose
solutions depend on Dijkstra’s and related techniques and
ask them to derive solutions. I intentionally place students
in situations where they must design solutions on their own
before I expose (inoculate?) them to classical solutions.
Using this approach, some students will come across the
basic solution, some will be this close to the solution, and
some will admittedly be no where near a solution. Yet my
experience has been that all the students appreciate the
classical design more after having attempted the problem
first. Even more importantly, students appreciate the design
behind the algorithm and are therefore, I suspect, better able
to apply their knowledge.

When students are involved in this type of learner-
centered approach, they develop analysis and design skills.
Other learner-centered approaches should be examined for
their applicability during these cognitively foundational
courses. For example, I typically ask students to work
independently on their design activities. I can see how
team-based efforts could be beneficial in other ways. I
don’t think the particular approach matters just so long as it
is learner-centered. In fact, I would hope to see multiple

learner-centered approaches followed over the entire
curriculum.

Strategies for Teaching Seniors
“Capstone Experience and Applied Research”
I am a supporter of a senior capstone experience. Students
benefit in many ways from these courses. Students revisit
the full software lifecyle and are afforded one more
opportunity to realize software development as more than
implementation. Students typically work in groups and gain
useful experience with the issues involving team
organization. I also encourage students to make use of
CASE (computer-assisted software engineering) tools such
as a coding tool, online documentation, version control tool,
and a data dictionary. While these (and other) tools are
discussed in the software engineering course, I believe their
applied use is quite valuable in preparation for industry.

There is no difficulty finding project ideas for such
a course. Many schools generate valuable ties with local
industry by having students develop software that addresses
local needs. Another option for these courses is to expose
students to research issues and develop software based on
the faculty member’s research interests. I personally favor
the second approach (with the understanding that other
efforts to secure close ties with local industry are pursued,
such as the formation of a professional advisory board.)
There are two reasons why I support a research based
capstone course. First, by involving students in research we
encourage further learning on their part. It has been my
experience that students respond well to the opportunity to
contribute to the overall discipline. My second reason for
supporting a research based course is that it benefits the
faculty member. When teaching such a course, one must
quickly bring the class up-to-speed on the topic of study.
This process of explaining in clear and succinct terms my
research frontiers has always proved to be beneficial in my
own personally thinking. This is further supported by the
fresh and novel reactions students offer on the subject, the
result being that such a course generates more good ideas
for further study than I could ever have derived on my own.

Summary
My education strategy addresses the need for computer
science faculty to support the notion that software
development is an engineering line activity and, as such, we
need to better integrate engineering principles in our
curriculum. The suggestions I put forth in this essay are
fully consistent with the requirements of traditional
accredited curriculum. (Western Kentucky University is
CSAB accredited.) I see no need to radically redesign the
classic curriculum. However I do see a benefit from
integrating the following:

• A modification of the first semester course to better
support design and testing;

www.manaraa.com

• A software engineering course early in the curriculum
that exposes students to the entire software lifecycle
using a learning-by-doing model;

• An openness to explore learner-centered designs the
more cognitive and theoretical courses;

• A capstone experience in the senior year that revisits
again the full software lifecycle.

It is my hope that these integrations will result in students
completing their computer science education with a better
appreciation of the activities associated with being a
software engineer.

References
[1] Schach, S.R., Classical and Object-Oriented Software
Engineering, 4th edition, Prentice-Hall (1999).

